Diagnostics for Multivariate Imputations∗

نویسندگان

  • Kobi Abayomi
  • Andrew Gelman
  • Marc Levy
چکیده

We consider three sorts of diagnostics for random imputations: (a) displays of the completed data, intended to reveal unusual patterns that might suggest problems with the imputations, (b) comparisons of the distributions of observed and imputed data values, and (c) checks of the fit of observed data to the model used to create the imputations. We formulate these methods in terms of sequential regression multivariate imputation [Van Buuren and Oudshoom 2000, and Raghunathan, Van Hoewyk, and Solenberger 2001], an iterative procedure in which the missing values of each variable are randomly imputed conditional on all the other variables in the completed data matrix. We also consider a recalibration procedure for sequential regression imputations. We apply these methods to the 2002 Environmental Sustainability Index (ESI), a linear aggregation of 68 environmental variables on 142 countries, with 22% missing values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple imputations and the missing censoring indicator model

Semiparametric random censorship (SRC) models (Dikta, 1998) provide an attractive framework for estimating survival functions when censoring indicators are fully or partially available. When there are missing censoring indicators (MCIs), the SRC approach employs a model-based estimate of the conditional expectation of the censoring indicator given the observed time, where the model parameters a...

متن کامل

Diagnostics for Multiple Imputations

Multiple imputation technique is becoming a popular method for analyzing data with missing values. Several methods have been proposed for creating multiple imputations and most of these methods assume that the data are missing at random (MAR). However, limited diagnostic tools are available to check whether the imputations created by these methods are reasonable. This article develops a set of ...

متن کامل

On multivariate imputation and forecasting of decadal wind speed missing data

This paper demonstrates the application of multiple imputations by chained equations and time series forecasting of wind speed data. The study was motivated by the high prevalence of missing wind speed historic data. Findings based on the fully conditional specification under multiple imputations by chained equations, provided reliable wind speed missing data imputations. Further, the forecasti...

متن کامل

Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response

Methods specifically targeting missing values in a wide spectrum of statistical analyses are now part of serious statistical thinking due to many advances in computational statistics and increased awareness among sophisticated consumers of statistics. Despite many advances in both theory and applied methods for missing data, missing-data methods in multilevel applications lack equal development...

متن کامل

On the Stationary Distribution of Iterative Imputations

Iterative imputation, in which variables are imputed one at a time each given a model predicting from all the others, is a popular technique that can be convenient and flexible, as it replaces a potentially difficult multivariate modeling problem with relatively simple univariate regressions. In this paper, we begin to characterize the stationary distributions of iterative imputations and their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004